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Reduce Quality Issues with Expert Guidance =CC
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Issue: Bad Welding

Problems in laser welding cells and lines were
identified and fixed in structured and efficient ways.
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@ Cost reduction in the order of

several 100 KEUR per welding cell/line per year.




M Product, Process, Resource (PPR) Asset Network =pr




Y] FMEA Tool APIS already includes PPR Assets =pr
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@ Expert Guidance: Reference Implementation =pr
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Expertise - Senior Asset Data Analyst =0

DI Sebastian Kropatschek, MSc - Austrian Center for Digital Production (ACDP)
> Background

©)

Senior researcher at Comet Excellence Centers for

Digital Production (CDP)

Process analysis and improvement projects with

Neuman Aluminium, VW, Kapsch, Post, OBB, etc.

Diploma degree in Technical Physics with a focus on

Quantum Physics from TU Wien, supervised by Anton Zeilinger

> Expertise

O

Advanced Technologies: Cause-effect analysis, knowledge graphs,
machine learning, quantum physics.

Industrial Engineering Experience: Automotive, aerospace,
and other sectors.

Lead for expert teams to solve complex industry challenges.
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Y Challenges

Wl E

Data Integration ?
Data Analysjs,?

Context: Production Automation Systems or related fields.
Challenges:
> Risk assessment is often not updated with sufficient frequency.
> Heterogeneous data sets are difficult to collect and integrate.
> Scattered engineering knowledge hinders a broad overview.
> Data analysis often takes considerable effort of experts. 9



Il Success Story: Agile Data Acquisition & Analysis

Use case: Tap 1,000 glasses of beer
> Central Information System as foundation for Al applications.
Efficient and agile data collection.

Flexible data analysis and dashboards.
Continuous process improvement.
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10



Expertise - Senior Quality Data Analyst

DI Dr. Dietmar Winkler, Center for Digital Production, and
TU Wien, Inst. of Information Systems Engineering.

> Background
o Business informatics: Software and system process improvement,
guality assurance and management.
o Area manager at the Center for Digital Production (CDP)
for data integration and analytics for digital production.

> Expertise
o (Software) Quality Assurance and Risk Management with FMEA.
o Data integration for efficient monitoring and analysis in CPPS.
o IS0 9001 certification support at Continental.
o Data analysis projects with Neuman, Volkswagen, OBB, Post etc.

Winkler et al, Industry 4.0 Asset-Based Risk Mitigation for Production Operation, Int. Conf on Automation Science and Engineering, 2021.
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Winkler et al, Modell-unterstitzte Qualitatssicherung fur das Engineering industrieller Produktionssysteme, In: Handbuch fur Industrie 4.0, 2017, 2024.


https://qse.ifs.tuwien.ac.at/people/dietmar-winkler/
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(¥l Challenges: Flexible Manufacturing @)

WIEN Forchungupruestah

Improve engineering knowledge and artifact reuse
for flexible manufacturing

a Insufficient systematic knowledge representation
of manufacturing variability

Products Processes Resourees

a Laborious knowledge elicitation of
‘containerized’ variability knowledge

n Hard validation of
manufacturing configurations

impedes scaling and transfer




WIEMN

n Improve the reuse of engineering artifacts and

production configuration for scaling up flexible manufacturing.

Varl

n Structured knowledge representation of
products, processes, and resources
in manufacturing variants.

Y Success Story: Variant Domain Analysis @)
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m Expertise - Senior Asset Variant Analyst @)

DI Dr. Kristof Meixner, TU Wien, Inst. of Information Systems Engineering

> Background
o (Business) Informatics: Efficient Reuse and Variability
Management of Families of Production Systems [1]
o Researcher in the Christian Doppler Research Lab SQI
o Reuse and variability analysis and modeling with
industry companies such as STIWA and Volkswagen.

> Expertise
o Senior Software Engineer in (open-source) Software Development.
o Transferring knowledge from one machine to another,
and from one factory to another.
o Scaling up flexible manufacturing with systematic reuse.

[1] Meixner et al.: Variability modeling of products, processes, and resources in cyber-physical production systems engineering. J. of Systems and Softw., 2024. 15


https://kristofmeixner.github.io/
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Data Analysis for Life Sciences

Classify crops on 100 satellite pictures
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Success Story: Cropsense




BY Success Story: Cropsense @ T

> Context: auditing crop production
in defined geographical areas.
> Goal: automatically recognize crops on satellite pictures

> Challenges: e
o Freely available satellite data (Sentinel-2) -
does not have sufficiently high resolution.
o Clouds prevent continuous monitoring.
o Preparation of satellite data requires N
understanding of the crops to be detected. -

> Processes that Procando method elements and tools
successfully supported
o Bridging crop and data science expertise
o Understanding the risks of erroneous crop
classification

18



Expertise - Senior Data Analyst

Dr. Stefan Fenz, TU Wien, Inst. of Information Systems Engineering

> Background
o Senior scientist and lecturer at TU Wien.
o Key researcher at Secure Business Austria Research.
o Conducted several industry and research projects
in Al applications and decision support systems.
o Co-founder of Xylem Technologies.

> Expertise
o Information Systems Engineering
o Semantic technologies (ontologies)
o Decision support systems
o Machine learning

19
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Y Process Optimization - Challenges

WIEMN

o
L
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|

Heitzinger et al., Superhuman performance on sepsis MIMIC-III data by distributional reinforcement learning. PLOS ONE, 17(11):e0275358/1-18,

2072

—

> Bake 100 Cakes —
> Drive 100 Routes.
> Make 100 Diagnoses.
> Control 100 Turbine Starts.

Challenges:

> Information silos:
QM, physics, IT, machine
vendors, medical knowledge.
> Local optimization may lead
to global quality problems.
> |nsufficient data on special
cases > blind spots in process
understanding & improvement.

J

Chari Dhogppi
Forscmmgagmeel
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Y Turbine Process Optimization - Best Practices CTD)

WIEMN P bl

> Bake 100 Cakes —
> Control 100 Turbine Starts.
> Optimize power grid resilience.
> Reduce wear and tear.
> Reduce costs.
Best Practices:
> Bridging information silos.
> Understanding risks that come
from causes in different domains.
> Backtrack asset dependencies.
Agile scenario-based process
observation, improvement.
Impact:
> More effective and efficient
[> [> Data Analysis and Al projects.
[> [> [) > Better testing and monitoring
— In a systems engineering team.

4

Heitzinger et al., Adapting to the “open world”: the utility of hybrid hierarchical reinforcement learning and symbolic planning. In Proc. 2024 |IEEE 22

International Conference on Robotice and Airitomation (1ICRA 202 A4)



Expertise — Process Optimization with Al @

Prof. Dr. Clemens Heitzinger, TU Wien,
Inst. of Information Systems Engineering.

> Background

o Co-Director of the Center for
Artificial Intelligence and Machine Learning (CAIML).
Process understanding with Machine Learning.
Process improvement with Reinforcement Learning.
Language Processing with Generative Al: Large Language Models.
Process optimization projects in autonomous driving, healthcare, industry,
energy production balancing, etc.

O O O O

> Expertise
o Information Systems Engineering to answer key stakeholder questions.
o Efficient Machine Learning.
o Process analysis and improvement for human and machine teams.

23


https://qse.ifs.tuwien.ac.at/people/stefan-biffl/
http://www.heitzinger.info/
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Expertise - Senior Process and Systems Analyst ~ CTD)__

Prof. Dr._Stefan Biffl, TU Wien, Inst. of Information Systems Engineering

> Background
o Business informatics: process understanding and improvement - P

o Lead of Christian Doppler Research Lab module for =Tl
Quality Improvement in the Production System Lifecycle AJ

o Key researcher at Comet Excellence Centers for
Digital Production (CDP) and Secure Business Austria (SBA)
o Process analysis projects with Volkswagen et al.

> Expertise
o Information Systems Engineering to answer key stakeholder questions
o Knowledge representation for human and machine experts
o Process analysis and improvement for human and machine teams

Biffl et. al, Multi-Disciplinary Engineering for Cyber-Physical Production Systems, Springer, 2017.

. o . . i ; . . 29
Biffl et. al, An Industry 4.0 Asset-Based Coordination Artifact for Production Systems Engineering, Int. Conf. on Business Informatics, 2021.


https://qse.ifs.tuwien.ac.at/people/stefan-biffl/

B Process Understanding with Quality Assurance CD)_._

Input
Quality

Assurance

> Process understanding requires quality assurance measurement
on the inputs to the process and
on the outputs that come from the process.

Fonchungupssslnchalt

Output

Quiality
Assurance

Too much

Waste



BB A Simple Data Analysis Project )N

> Start simple: 5x5 puzzle with a target picture.
o Assemble the puzzle.
o What is this story about?
o This looks like an easy task.

31
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A Simple Data Analysis Project meets Reality

> Start simple: 5x5 puzzle with a target picture.
o Assemble the puzzle.

> Take away half of the pieces.
o What is this story about?

32



> Start simple: 5x5 puzzle with a target picture.
o Assemble the puzzle.

> Take away half of the pieces.
o Exchange further pieces for wrong ones.
o Thisis reality from data analysis projects.
o What is this story about?

33



> Start simple: 5x5 puzzle with a target picture.
o Assemble the puzzle.
> Take away half of the pieces.
o Exchange further pieces for wrong ones.
o This is reality from data analysis projects.
> Add 1,200 puzzle pieces that you
happen to find in your puzzle storage.
o Tryto find the original 25 pieces
without a target picture.
o Thisis a data analysis project .
with big data, but without a clear plan. ]



Start simple: 5x5 puzzle with a target picture.
o Assemble the puzzle.

Take away half of the pieces.
o Exchange further pieces for wrong ones.
o This is reality in many data analysis projectJs

Add 1,200 more pieces that you

happen to find in your puzzle storage.

Ask an Al algorithm to propose “5x5 solutions”.
o Get several plausible,

but wrong “solution options”.

Ask a data analyst to improve your situation: what can they do? =gy
o How shall they find a needle in the big haystack?
o How shall they spin straw to gold?

What started as a small problem, became a big problem.




B8 The Data Analyst and the Shared Data Space )

> The Data Analyst shall answer a question on a process conditj
such as “Is Cake Waste high?” with the data they receive. J

> The Shared Data Space is all data available in an organization,
a gold mine, a well-kept storage, or a dump, depending on whom you ask.
Where will the data for analysis come from?



B8] Keys toaSimple Data Analysis Project

> You want these 5x5 puzzle pieces
o that represent the concepts
o tounderstand the story.
o ... butwhere are these puzzle pieces?

> You want access to data
o that fit to the puzzle pieces, and
o that the data analyst can understand.
o ... butwho knows where to find this data?

> As the sponsor of a valuable data analysis project,
you want answers to these questions.
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